文章编号:1004-2474(2017)06-0920-04

基于 0.13 µm SOI COMS 工艺的 VCSEL 驱动器设计

潘彦君,孙向明,黄光明,叶竞波,龚达涛,董业民,杨文伟,杨 苹 (华中师范大学像素实验室,湖北武汉 430062)

摘 要:介绍了一种低功耗高速垂直腔表面发射激光器(VCSEL)驱动器的设计。该芯片设计使用国产 0.13 μm SOI CMOS 工艺,能提供 6~8 mA 可调调制电流及 4~7 mA 可调偏置电流。驱动电路采用多级级联放 大并结合无源电感并联峰化技术,用以拓展带宽。测试结果表明,该电路在 1.2 V 单电源工作电压下,最高工作速 率可达 5 Gbit/s,总功耗仅为 48 mW。

关键词:绝缘衬底上的硅(SOI);激光驱动器;并联峰化;高速;低功耗 中图分类号:TN7 文献标识码:A

Design of VCSEL Driver Based on 0. 13 µm SOI COMS Process

PAN Yanjun, SUN Xiangming, HUANG Guangming, YE Jingbo,

GONG Datao, DONG Yemin, YANG Wenwei, YANG Ping

(Pixel Laboratory at CCUN, Central China Normal University, Wuhan 430062, China)

Abstract: The design of low power high speed Vertical-Cavity Surface-Emitting Laser (VCSEL) driver is introduced in this paper. The chip is designed based on the domestic 0.13 μ m SOI COMS process which can provide 6~ 8 mA adjustable modulation current and 4~7 mA adjustable bias current. The multi-stage amplifier combined with passive shunt peaking inductor is used to expand the bandwidth of the driver. The test results show that the maximum operating rate of the driver is 5 Gbit/s and the total consumption is only 48 mW under the single power supply voltage of 1.2 V.

Key words: silicon-on-insulator(SOI); laser driver; shunt peaking; high speed; low power

0 引言

当今社会,随着信息技术的高速发展,光纤通信 已在通信系统中得到了广泛应用。光纤通信是以光 为载波,以光纤为传输介质的一种通信方式,该方式 具有无信号串扰、无需考虑阻抗匹配等优势^[1-2]。然 而,作为光电转换的激光驱动器,其速率直接制约着 光纤两端信号收发电路的信息传输速度,如何提高 激光驱动器的速率、降低其功耗及生产成本对其商 业推广应用有着深远的意义。另一方面,光纤通信 系统不仅应用于日常生活,也在高能物理实验、核医 疗器械等其他领域中发挥着重要作用,但光纤系统 需要一定的抗辐照能力,如何解决这一问题,成为光 纤通信是否能够应用于辐照系统中的关键^[3]。在此 背景下,本文采用国产 0.13 μm SOI CMOS 工艺, 设计出驱动速率达 5 Gbit/s 的低功耗垂直腔表面 发射激光器(VCSEL)激光驱动芯片。相对于传统 互补金属氧化物半导体(CMOS)体硅工艺,绝缘衬 底上的硅(SOI)工艺具有无闩锁效应、速度快和抗 辐照等特点。本文介绍的电路设计具有一定的抗辐 照能力,对其在高能物理实验等辐照环境下的应用 具有参考意义。

1 SOI CMOS 工艺

SOI 是集成电路在步入纳米技术时代后,能突破体硅技术和硅集成电路限制的新型集成电路技术,被誉为"21世纪的硅技术"。SOI 工艺中,绝缘衬底上器件的有源区位于绝缘层上的硅膜内,因其具有完全的介质隔离,消除了体硅工艺中存在的部分寄生效应。SOI 材料器件也因此具有避免了闩锁

收稿日期:2017-03-14

基金项目:中央高校基本科研业务费专项资金资助项目(CCNU16A05029)

作者简介:潘彦君(1991-),女,湖北武汉人,硕士生,主要从事模拟集成电路设计,在校期间从事激光驱动器的设计。通信作者:孙向明 (1981-),男,山东潍坊人,教授,博士生导师,主要从事像素探测器的设计与研究。

效应的产生,更低的功耗,提高了电路的工作速度及 较强的抗辐照能力等优点^[4]。本设计采用国产 0.13 μm SOI 工艺,该工艺的器件抗总剂量(TID) 效应能力约为 300 krad。与国外昂贵的工艺相比, 采用此工艺不仅可降低生产成本,且能推动国产 SOI 工艺的发展。

2 结构设计

VCSEL 是一种半导体发光器件,若 VCSEL 输入电流小于其阈值电流,所发出的光是光谱范围很宽的非相干光,用于表征逻辑低;当输入电流值到达或超过其阈值电流时,将产生非常高的相干光,用于表征逻辑高。其中,共阳结构或阴阳极分离结构的VCSEL 可采用电流驱动方式,而共阴结构的 VC-SEL 只能采用电压驱动方式。VCSEL 驱动电路主要是将输入的数字信号放大,并以电流或电压的方式驱动 VCSEL 快速的关断或开启^[5]。

我们选用共阳结构的 VCSEL,本设计为全差分 结构的电流驱动器。VCSEL 驱动的电路框图,如 图 1 所示。其中,输入匹配电路用于调节输入信号 的共模电平,并提供50 Ω的端接匹配电阻;前级放 大器主要用于放大信号,并驱动具有较大等效输入 电容的输出级电路;输出级电路用于向 VCSEL 提 供足够大的调制电流且电流值可调;VMOD 引脚用 于控制调制电流的大小;偏置电路向 VCSEL 提供 可调偏置电流。

3 模块设计

3.1 输入匹配电路及输出级设计

输入匹配电路如图 2 所示。输入匹配电路实现 差分信号匹配的同时,为前级放大器提供共模电平。 设计采用电阻分压方式获得共模电压,通过调整电 阻的比例为后一级放大器提供 0.8 V 的共模电压。 差分输入的匹配电路为两个 50 Ω 的电阻,将电阻的 中心点连接至偏置点,从而形成差分输入信号的 匹配。

图 2 输入匹配电路

输出级(见图 3)同样采用 50 Ω 的上拉电阻进 行匹配,为保证最大电流 8 mA 的输出能力,尾电流 管 NM₁ 选用的宽长较大,其栅极电压经由 VMOD 外接,用来调节调制电流。

3.2 前级放大器设计

在本设计中,前级放大器需要提供 18 dB 的增 益,当负载约为 200 fF 时,小信号带宽高于3.5 GHz。 为驱动较大的等效负载,本设计采用的多级级联放 大器如图 4 所示,多级放大器能够有效提高带宽。 为简化计算,假设各级具有相同的增益-带宽积 ω_T, 若总的增益为 G,则每个放大级的增益为 G^{1/n},而单 级的带宽为

$$BW_{\rm s} = \frac{\omega_{\rm T}}{G^{1/n}} \tag{1}$$

由式(1)得到整个放大器的带宽为

$$BW_{t} \approx \frac{\omega_{\rm T}}{G^{1/n}} \cdot \frac{\sqrt{\ln 2}}{\sqrt{n}} \tag{2}$$

由式(2)可推导出当每一级的增益为√e时,总的带宽 最大。由此得到对应的最优级数为

$$n = 2\ln G \tag{3}$$

图 4 前级放大器

根据设计要求,总增益为18 dB,代入式(3)计 算得到最优级数为4级^[6]。每级均为基本差分放大 器,负载电阻逐级减半,差分输入管宽度逐级增加, 使得每级的增益带宽积尽可能相同,更接近式(2)。 将仿真得到的增益带宽积 10.98 GHz代入式(2), 计算得到总带宽为2.72 GHz,这与仿真结果 2.17 GHz接近。这一结果充分说明级联放大器在 相同的增益下,可取得较高的带宽,而此时的带宽仍 小于设计值。电感峰化技术是在电路负载中增加电 感以扩展带宽的一种技术。图5(a)为一个简单的 共源放大器,图5(b)在放大器的负载电阻上串联了 一个电感。分别对两个电路进行小信号分析。图5 (a)所示电路的传递函数为

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{g_{\text{m}}(R + j\omega RCm)}{1 + j\omega RC - \omega^2 R^2 C^2 m}$$
(5)

其中

$$m = \frac{L/R}{RC} \tag{6}$$

对比式(4)、(5)可看出,感性负载引入了一个零 点,消除了极点的影响,从而增大了带宽。电感峰化 技术又分为有源电感峰化和无源电感峰化。有源电 感通常由 N 型金属-氧化物-半导体(NMOS)管和电 阻来实现^[7]。使用 NMOS 管作为负载,不仅会带来 噪声,且 NMOS 管的阈值电压会带来压降,从而限 制了输出信号的摆幅,因此,需采用双电源或升压电 路的方式减小压降带来的影响。经过综合考虑,本 设计采用无源电感并联峰化,在最后一级中加入片 上电感,在获得足够带宽的同时尽可能地减小面积。

3.3 偏置电流产生电路设计

由 VCSEL 的特性可知, VCSEL 在光信号传输 时表现为高电流,即逻辑高;低电流,即逻辑低。传 输过程中的 VCSEL 始终处于导通状态,而为使其 能够更快地开启,逻辑低对应的电流应适当地高于 阈值,阈值电流的典型值为 3 mA。由 6~8 mA 的 调制电流可知,偏置电流应大于 6 mA。偏置电流 由基本电流镜产生^[8],电流镜栅极经由 VBIAS 外 接,通过调节尾电流管栅极电压以改变偏置电流的 大小。

4 版图设计和仿真

芯片在探针台上的照片如图 6 所示,本设计为

高速差分电路,版图布局采用完全对称结构,充分考 虑共质心原则、匹配器件方向一致、匹配器件相互靠 近、小尺寸匹配器件增加虚拟器件等匹配原则^[9]。 走线时差分信号线完全对称,高速线尽可能避免长 线以减少寄生电阻电容。

图 6 激光驱动器芯版图片

版图使用 Calibre 软件进行寄生参数提取, Spectre 工具进行仿真,得到后仿真结果如图 7 所 示。仿真结果显示在速率为 5 Gbit/s 时,抖动为 17.3 ps,最大输出电流可达 8.3 mA,满足设计 要求。

芯片经绑线、封装、焊接后使进行测试(测试环 境见图 8)。当输入峰-峰值为 100 mV、速率为 5 Gbit/s的信号时,该激光驱动器在 100 Ω 负载上 的输出电流测试眼图如图 9 所示。由图可见,最大 输出调制电流可达 8 mA;总抖动为 58.6 ps,其中, 随机抖动为 1.5 ps,确定性抖动为 42.28 ps,该结果 与后仿真有一定差异,其主要原因来自系统噪声及 绑线所引入的寄生电感电容。

图 8 测试平台与测试板

5 结束语

该电路设计周期较短,其主要目的在于验证使 用该工艺进行高速激光驱动器设计的可行性。结果 显示,该设计能够提供最大达 8 mA 的驱动电流;芯 片在速率 5 Gbit/s 时工作性能优异,该工艺可应用 于高速激光驱动器的设计。

参考文献:

- [1] RAZAVI B. 光纤通信集成电路设计[M]. 北京:人民 邮电出版社,2008.
- [2] 李筱婷. ATLAS 液氩量能器前端读出系统 Phase-I 升 级的光纤数据传输 ASIC 设计[D]. 武汉:华中师范大 学,2014.
- [3] 张钰青. 抗辐照 SOI MOSFET 模型研究[D]. 杭州:杭州电子科技大学,2015.
- [4] 李泳锦.单通道超高速 CMOS VCSEL 驱动器设计与 仿真[D].西安:西安电子科技大学,2014.
- [5] LEE T H. CMOS 射频集成电路设计[M]. 北京:电子 工业出版社,2006.
- [6] 江浩.高频放大器中集几种扩展带宽技术的研究[J]. 科技信息,2007(34):110-112.
 JIANG Hao. Research of the techniques for bandwidth enhancement of radioamplifier[J]. Sinence & Technology Information, 2007(34): 110-112.
- [7] RAZAVI B. 模拟 CMOS 集成电路设计[M]. 西安:西 安交通大学出版社, 2003.
- [8] HASTINGS A. 模拟电路版图的艺术[M]. 北京:电子 工业出版社,2007.