文章编号:1004-2474(2018)03-0331-03

用于磁控溅射膜的一种剥离技术

刘 娅,杨正兵,蒋 欣,李 磊,何西良,徐 阳

(中国电子科技集团公司第二十六研究所,重庆 400060)

摘 要:为了解决磁控溅射膜的剥离问题,该文研制了一种新型的双层胶剥离技术。通过调整双层光刻胶的 坚膜时间、坚膜温度和显影时间,制备出好的光刻胶倒梯形形貌,得到磁控溅射膜较好的剥离效果。为薄膜体声波 谐振器(FBAR)的研制提供了有意义的指导。

关键词:磁控溅射;剥离工艺;双层胶;倒梯形;薄膜体声波谐振器(FBAR)

中图分类号:TN65

文献标识码:A

DOI:10. 11977/j. issn. 1004-2474, 2018, 03, 006

A Lift-off Technique for Magnetron Sputtering Film

LIU Ya, YANG Zhengbing, JIANG Xin, LI Lei, HE Xiliang, XU Yang

(The 26th Institute of China Electronics Technology Group Corporation, Chongqing 400060, China)

Abstract: In order to solve the problem of the lift-off of magnetron sputtering film, a bi-layer lift-off process has been researched in this paper. The good lift-off effect of magnetron sputtering film has been obtained through changing baking time, baking temperature and development time of the bi-layer photoresist and the fine photoresist pattern with T-top has been fabricated. The results provide a helpful process guideline for fabricating film bulk acoustic resonator (FBAR) devices.

Key words: magnetron sputtering; lift-off process; bi-layer glue; T-top; film bulk acoustic resonator(FBAR)

0 引言

随着无线通信系统和蓝牙技术的迅速发展,工作在射频波段的通讯器件因其具有高性能、低功耗、微型化及集成化等特点越来越受人们的重视。传统的陶瓷介质谐振器和声表面波(SAW)器件由于自身的一些限制,在现代军用及商用上出现了明显缺陷。薄膜体声波谐振器(FBAR)由于体积小,品质因数(Q)值高,工作效率高,承受功率大,换能效率高,且与半导体工艺兼容等特点[141],成为一种性能优良的射频(RF)滤波器,更符合现代无线通信领域应用的苛刻要求,成为近年来此类器件研究与开发的一个热点。

通过大量研究表明,无论是金属本身性能,还是与压电层 AIN 薄膜的匹配效果,金属 Mo 是 FBAR 器件中较好的电极材料的选择^[1]。由于 Mo 的熔点较高(为 2 617 °C),不能采用电子束蒸发镀膜,只能采用磁控溅射镀膜的方式来制备 Mo 薄膜。然而在FBAR 器件研制过程中,常采用湿法腐蚀^[5]或干法刻蚀的方法制备金属 Mo 薄膜图形。采用湿法腐蚀

法存在腐蚀速率慢且不可控,侧壁角度较大及侧壁 粗糙等缺陷;干法刻蚀金属 Mo 时容易过刻,伤及电 极 AlN 薄膜。

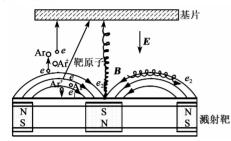
本文采用双层胶剥离技术剥离磁控溅射镀 Mo 膜,通过调节烘烤温度和显影时间等工艺参数,研究 了不同工艺参数对剥离效果的影响,从而获得最佳 剥离效果的图形。

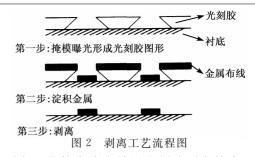
1 实验

1.1 实验原理

磁控溅射是在氩(Ar)放电情况下进行,则电子 e 在电场 E 作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出 Ar^+ 和一个新的电子 e_1 ,电子飞向基片, Ar^+ 在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。溅射粒子中的中性靶原子或分子沉积在基片上形成薄膜。二次电子 e_2 一旦离开靶面,就同时受到电场和磁场的作用。为了说明电子的运动情况,可近似认为二次电子在阴极暗区时受电场作用,进入负辉光区仅受磁场作用。从靶面发出的二次电子,首先在阴极暗区

受到电场加速飞向负辉光区。电子进入负辉光区具有一定速度,并且是垂直于磁力线运动,由于受到磁场 B 洛仑兹力的作用,而绕磁力线旋转,在旋转半圈之后,重新进入阴极暗区,受到电场减速。电子接近靶面时速度即可降为 0。以后,电子又在电场的作用下再次飞离靶面,开始一个新的运动周期。电子如此周而复始,跳跃式的朝 $E \times B^{[6]}$ 所指的方向漂移,如图 1 所示。




图 1 磁控溅射原理示意图

射频磁控溅射的原理是指在一定气压下,当阴、阳极之间所加交流电压的频率增高到射频频率时,即可产生稳定的射频辉光放电,以这种射频高压作用维持溅射沉积。射频辉光放电有两个重要特征:

- 1) 在辉光放电空间产生的电子获得了足够的能量,足以产生碰撞电离,因而减少了放电对二次电子的依赖,且降低了击穿电压。
- 2)由于射频电源可以在绝缘靶表面上建立起负偏压,在靶上施加射频电压后,当溅射靶处于上半周时,由于电子的质量比离子的质量小,故其迁移率很高,仅用很短的时间就可飞向靶面,中和其表面积累的正电荷,从而实现对绝缘材料的溅射。

由于射频放电频率高,这使得外加电压的变化 周期小于电离和消电离所需的时间,等离子体浓度 来不及变化。又由于电子质量小,容易跟随外电场 从射频场中吸收能量,并在场内作振荡运动。但电 子在放电空间的运动并不是简单地从一个电极到另 一个电极,而是在放电空间不断地来回运动,增加了 与气体分子的碰撞几率。因此,射频磁控溅射方式 镀膜电子的运动是无方向性的。

剥离技术是在衬底上涂上光刻胶,并通过掩模曝光和显影制成倒梯形(即倒"T"形),要求对不需要金属膜的区域覆有光刻胶。然后在其上淀积金属膜,这样金属膜仅在需要它的区域与衬底相接触。最后用不侵蚀金属膜的溶剂除去光刻胶。随着光刻胶的去除,胶上的金属被剥离,而留下了制成图形的金属布线,流程如图 2 所示。

剥离工艺技术分为单层光刻胶剥离技术和多层 光刻胶剥离技术。多层光刻胶剥离技术必须采用多 种光源的光刻胶,使用常规工艺和设备难以实现。 双层胶剥离比单层胶剥离多涂了一层光刻胶,主要 是通过对底层胶的柔性烘烤和对上层胶的选择性曝 光,然后在显影液中显影,即可得到适合于剥离的具 有暗刻蚀侧剖面的掩膜图形(即倒"T"形)。在该剥 离法中,形成图形的关键在于上层胶,因为它确定了 金属图形的尺寸;底层胶显影尺寸略大干上层胶,底 层胶和上层胶的尺寸差可通过调整显影时间来控 制,同时提供了掩膜层和金属层之间的厚度差,因而 可消除金属台阶覆盖,使掩膜上的金属层与基片接 触的金属层分离,确保顺利剥离。剥离工艺的关键 在于光刻胶的形貌(即倒"T"形),而双层胶具有很 好的倒"T"形光刻胶形貌(见图 3),更有利于磁控溅 射镀膜的剥离。

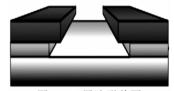


图 3 双层胶形貌图

1.2 实验方案

采用 TEGAL 公司生产的 Endeavor 磁控溅射 镀膜设备镀 Mo 膜 500 nm,涂胶显影采用 SUSS 公司生产 ACS200 涂胶显影系统,曝光采用 ASML 公司生产的 Stepper 100D 及 SSEC 公司生产的剥离机 M3303 进行剥离。为了获得满意的剥离效果,研究了烘烤温度和显影时间对光刻胶的形貌和剥离效果的影响,具体方案如表 1 所示。

表1 实验方案

样品	烘烤	显影	样品	烘烤	显影
	温度/℃	时间/min		温度/℃	时间/min
1	190	2.0	6	200	3.0
2	190	2.5	7	210	2.0
3	190	3.0	8	210	2.5
4	200	2.0	9	210	3.0
5	200	2.5			

2 结果及讨论

图 4 为不同显影时间对光刻胶形貌的影响。由 图可看出,当烘烤温度和曝光量一定时,随着显影时 间的增加,上层胶的尺寸几乎无变化;底层胶的尺寸 逐渐减小,因为显影时间增加,底层胶会溶解得更多, 故底层胶和上层胶的尺寸差逐渐增大,有利于剥离。

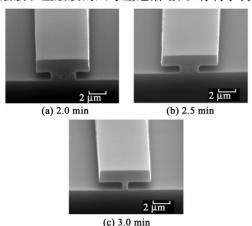


图 4 不同显影时间光刻胶的 SEM 图

图 5 为不同烘烤温度对光刻胶形貌的影响。由图可看出,当显影时间和曝光量一定时,随着烘烤温度的增加,底层胶和上层胶的尺寸差逐渐减小。这是因为烘烤温度越高,光刻胶中溶剂含量越少,显影时溶解速度就越慢。烘烤温度过低或过高都会影响光刻胶的粘附性,故需选择适宜的烘烤温度。

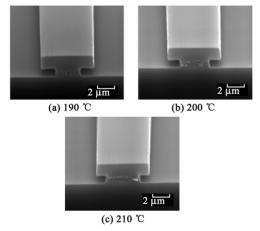
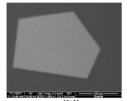
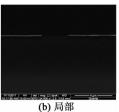




图 5 不同烘烤温度光刻胶的 SEM 图

图 6 为烘烤 210 ℃,显影 2 min 的剥离效果图。由图可看出,大部分已剥离干净,但在图形的边缘有金属膜残留;由于烘烤温度较高,光刻胶中溶剂含量较少,显影速度较慢,且显影时间较短,使底层胶和上层胶的差值较小(见图 5(c)),磁控溅射镀膜时无方向性,会有一部分膜和底层胶相连(见图 7),导致图形边缘有残留。

(a) 整体

图 6 烘烤 210 ℃,显影 2 min 的剥离效果图

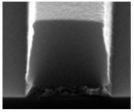


图 7 镀膜后的效果图

图 8 为烘烤 190 ℃,显影 3 min 的剥离效果图。由图可看出,剥离效果较好,图形边缘无残留的金属膜。由于烘烤的温度较低,光刻胶中含有一定量的溶剂,显影的速度较快,且显影时间较长,使底层胶和上层胶的差值较大(见图 4(c)),磁控溅射镀膜时,即使镀膜无方向性,但也未与底层胶相连(见图9),容易剥离且剥离效果很好。

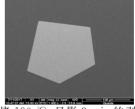


图 8 烘烤 190 ℃, 显影 3 min 的剥离效果图

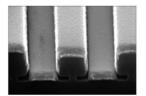


图 9 镀膜后的效果图

3 结束语

采用双层胶剥离的工艺研究了不同的坚膜时间、 坚膜温度和显影时间对光刻胶形貌的影响,进而对磁 控溅射镀膜的剥离效果进行了研究。结果显示,合适 的烘烤温度和显影时间可制作出有利于剥离磁控溅 射膜的光刻胶图形,且能得到良好的剥离效果。

参考文献:

[1] LEUNG C S, HAO Weida. Piezoelectric sensors for monitoring airport surface movement-A sustainable airport ground traffic management system [C]//Austria: IEEE Forum on Integrated and Sustainable Transportation Systems Vienna, 2011:339-343.

(下转第336页)