文章编号:1004-2474(2018)03-0448-06

激光陀螺捷联惯性导航系统 IMU 误差标定

王建中

(重庆青年职业技术学院 信息工程系,重庆 400712)

摘 要:针对激光陀螺捷联惯性导航系统惯性测量单元(IMU)误差标定对转台精度、基座对北和调平要求较高,以及系统工作时激光陀螺抖动、长时间工作温度升高、算法复杂等因素,提出了以速度为观测量,采用以最小二乘拟合法的系统级标定法。通过三轴转台多位置测量:静止-转动-静止,快速辨识三轴激光陀螺和三轴加速度计正 交安装误差、传感器零偏、刻度因子等24个误差参数,整个标定过程时间约2h,多位置对准航向、横滚、俯仰测试 精度优于0.012°。实验表明,采用该方法算法简单,操作过程便捷,可以有效提高激光陀螺捷联惯性导航系统 IMU 精度。

关键词:惯性测量单元;最小二乘法;安装误差;零偏;刻度因子 **中图分类号:**TN384 **文献标识码:**A **DOI:**10.11977/j.issn.1004-2474.2018.03.032

Error Calibration of IMU in Laser Gyro Strapdown Inertial Navigation System

WANG Jianzhong

(Dept. of Information Engineering, Chongqing Youth Vocational & Technical College, Chongqing 400712, China)

Abstract: As the inertial measurement unit (IMU) error calibration of the laser gyro strapdown inertial navigation system has high requirements on the precision of the turntable, the base north alignment and leveling, and considering the factors such as the jitter of the laser gyro, the temperature rises under long time working, and the complexity of the algorithm during the system operation, a system-level calibration method using the speed as the measurement value and the least square fitting method was proposed in this paper. Through three axis turntable to process multi-position measurement; stationary-rotation-stationary, 24 error parameters, such as installation error, sensor zero bias and the scale factor between three-axis laser gyro and three-axis accelerometer have been rapidly identified. The whole calibration process takes about 2 hours, with the multi-position alignment heading, roll, pitch accuracy of higher than 0. 012°. The experiment shows that the proposed algorithm is simple and the operation process is convenient, and the IMU precision of the laser gyro strapdown inertial navigation system can be improved effectively.

Key words: inertial measurement unit (IMU); least square method; installation error; zero bias; scale factor

0 引言

激光陀螺捷联惯导系统惯性测量单元(IMU) 由3个激光陀螺仪和3个加速计组成,其非正交安 装、传感器零偏、刻度因子等误差直接影响系统的精 度,因此,IMU误差标定是捷联惯性导航系统研制 和使用过程中非常重要的环节。国内、外常采用分 立标定法和系统级标定法。分立标定法需通过精密 的测试设备提供姿态基准^[1],以地球自转角速度、重 力加速度和转台角速度作为参考量,与陀螺仪和加 速度计的实际输出量进行比较,从而求解出各项误 差系数,但激光陀螺工作时,本身要产生抖动,从而 影响标定精度。系统级标定法主要是利用惯性仪表 的输出进行导航解算,以导航误差作为观测量来确 定误差参数,避免了使用精密仪表,但其计算量大, 滤波算法复杂,且标定时间长^[2]。

针对以上两种方法的缺点,以及标定过程中转

收稿日期:2018-02-08

基金项目:重庆市教委科学技术研究项目 MEMS 捷联惯性导航系统研究(No. KJ1603902);重庆市基础科学与前沿技术研究专项北斗组 合导航系统的数据融合方法研究(No. cstc2016jcyjA0138);新媒体环境下的教学资源管理云平台建设与教育教学深度融合研究 作者简介:王建中(1979-),男,四川蓬安人,副教授,高级工程师,硕士,主要从事计算机信息技术、惯性导航方向的研究。E-mail: 570691790@qq. com。

台需要对北和调平等困难^[3],本文提出了系统级多 位置 24 参数标定方法,通过手动或自动三轴转台旋 转位置完成全部参数辨识,整个标定过程时间约 2 h。该方法以速度为观测量,采用最小二乘法,标定 三轴激光陀螺和加速度计正交安装、传感器零偏、刻 度因子等 24 个参数,其算法简单、高效,提高了系统 IMU 精度。

1 IMU误差模型建立

激光陀螺捷联惯导系统主要组件的 3 个激光陀 螺仪和3个加速度计在机械安装时存在误差,激光 陀螺坐标系与加速度计传感器本身在工程安装中不 能完全正交,存在一定偏角[4]。激光陀螺仪和加速 度计两个坐标系不能完全重叠,也是非正交的误差 源。另外,激光陀螺固定干转台位置转动 360°的角 速度输出量与理论值、加速度计正、反两个方向输出 量与理论值对应的值不一致,需要标定刻度因子;同 时传感器在零位置输出量存在误差。采用以最小二 乘拟合法的系统级标定,通过三轴转台多位置:静 止-转动-静止^[5],激光陀螺捷联惯导系统在固定位 置保持静止,给定初始航向完成标定准备工作后,按 照预先设计的方向转动或旋转至指定位置,保持系 统静止后再测量系统数据,测试时间为T,通过观测 系统速度变化和转动过程传感器的变化量,标定24 个误差参数,一共进行14个步骤。

在标定过程中,定义东北天坐标系为基准坐标 系^[4],激光陀螺误差方程为

$$\begin{cases} \omega_{tx} = b_{11}\omega_{x} + b_{12}\omega_{y} + b_{13}\omega_{z} - B_{01} \\ \omega_{ty} = b_{21}\omega_{x} + b_{22}\omega_{y} + b_{23}\omega_{z} - B_{02} \\ \omega_{tz} = b_{31}\omega_{x} + b_{32}\omega_{y} + b_{33}\omega_{z} - B_{03} \end{cases}$$
(1)

式中: ω_{tx} , ω_{ty} , ω_{tz} 为代入标定参数后激光陀螺的输出 角速度; B_{01} , B_{02} , B_{03} 为激光陀螺零偏; b_{11} , b_{22} , b_{33} 为 激光陀螺刻度因子,也称为比例系数; b_{12} , b_{13} , b_{21} , b_{23} , b_{31} , b_{32} 为激光陀螺安装误差。

加速度计误差方程为

$$\begin{cases} a_{tx} = a_{11}a_x + a_{12}a_y + a_{13}a_z - A_{01} \\ a_{ty} = a_{21}a_x + a_{22}a_y + a_{23}a_z - A_{02} \\ a_{tz} = a_{31}a_z + a_{32}a_y + a_{33}a_z - A_{03} \end{cases}$$
(2)

式中: a_{tx} , a_{ty} , a_{tz} 为代入标定参数后加速度计输出的 速度增量; A_{01} , A_{02} , A_{03} 为速度计零偏; a_{11} , a_{22} , a_{33} 为 加速度计刻度因子,也称为加速度计比例系数; a_{12} , a_{13} , a_{21} , a_{23} , a_{31} , a_{32} 为加速度计安装误差。

2 IMU标定方案设计

激光陀螺捷联惯导系统其惯性组件安装在固定 箱体结构后,由于存在各种误差,3个激光陀螺和3 个加速度计与理论坐标系东北天存在一定误差角。 系统固定在标定三轴转台上,激光陀螺和加速度安 装误差、转台误差控制在3'内,IMU的实际位置与 导航坐标系理论值误差如图1所示。IMU与导航 坐标系定义:*E*₁*N*₁*U*₁ 为激光陀螺捷联导航系统惯 性组合的实际位置;*ENU*为东北天导航坐标系,两 者之间存在一定偏角。系统固定在手动三轴转台如 图2所示。

图 1 系统 IMU 组件安装与理论坐标系对比

图 2 系统固定在手动三轴转台

IMU 速度误差在东北天导航坐标系下为

 $\delta \dot{V}^n = - \, arphi^n imes f^n - (- \, 2 \omega_{ie}^n + \omega_{en}^n) imes \delta V^n$

 $-(2\delta\omega_{ie}^{n}+\omega_{en}^{n})\times V^{n}+C_{b}^{c}\delta f^{b}$ (3)

在标定过程中,系统不发生位移,因此, $V^n = 0, \omega_{en}^n = 0$;地球自转角速度相对于转台旋转角速度 很小, $-2\omega_{ie}^n \times \delta V^n$ 忽略不计,故速度误差方程为

 $\delta \dot{V}^n = -\varphi^n \times f^n \tag{4}$

IMU 标定前,安装固定系统,转台初始位置对 准北向,即转台固定在 0°位置,系统航向、横滚、俯 仰对准 0°。预装 24 个标定参数,x、y、z 轴激光陀螺 刻度因子为 0.932 920,x、y、z 轴加速计刻度因子为 1.0,其余参数初始值设为 0。3 个激光陀螺和 3 个 加速度计数据采集周期 τ =5 ms,每个位置静止时 数据采集 100 s,即采集次数 n=20 000, ΔV_{e1} 、 ΔV_{e2} 为在 t_1 、 t_2 时刻东向速度,常数 K=180/ π 。IMU 标 450

1)标定加速度计刻度因子 *a*₁₁、*a*₂₂、*a*₃₃,零偏 *A*₀₁、*A*₀₂、*A*₀₃。先将系统固定,转动三轴转台至航向 0°、横滚 0°、俯仰 0°位置,保持系统静止,给定航向 0°,寻北完成后采集数据 100 s;然后沿俯仰方面缓 慢、匀速转动+90°,即俯仰从 0°转动至+90°,保持 静止采集数据 100 s;再俯仰方向转动-180°,转动 至-90°,采集数据 100 s;而后俯仰方向转动+90°, 转动至 0°,沿横滚方向转动+90°,转动至+90°,采 集数据 100 s;横滚方向转动-180°,即横滚从+90° 转动至-90°,采集数据 100 s;最后回到初始位置。 系统在三轴转台位置依次如图 3~7 所示,最后回到 图 3 位置,航向、横滚、俯仰分别用 *H*、*R*、*P*表示。

$$\mathbb{R}$$
 7 $H=0^{\circ}, R=0^{\circ}, P=-90^{\circ}$

零偏参数和加速度计刻度因子如下:

$$\begin{cases} A_{01} = A_{01_{-0}} + (\sum_{i=1}^{20\ 000} a_{x_{-}p(i)} + \sum_{i=1}^{20\ 000} a_{x_{-}m(i)})/2T_{100} \\ A_{02} = A_{02_{-0}} + (\sum_{i=1}^{20\ 000} a_{y_{-}p(i)} + \sum_{i=1}^{20\ 000} a_{y_{-}m(i)})/2T_{100} \\ A_{03} = A_{03_{-0}} + (\sum_{i=1}^{20\ 000} a_{z_{-}p(i)} + \sum_{i=1}^{20\ 000} a_{z_{-}m(i)})/2T_{100} \end{cases}$$
(5)

$$\begin{cases} a_{11} = a_{11_{-0}} / \left[\left(\sum_{i=1}^{20\ 000} a_{x_{-}p(i)} - \sum_{i=1}^{20\ 000} a_{x_{-}m(i)} \right) / 2T_{100} \right] \\ a_{22} = a_{22_{-0}} / \left[\left(\sum_{i=1}^{20\ 000} a_{y_{-}p(i)} - \sum_{i=1}^{20\ 000} a_{y_{-}m(i)} \right) / 2T_{100} \right] \\ a_{33} = a_{33_{-0}} / \left[\left(\sum_{i=1}^{20\ 000} a_{z_{-}p(i)} - \sum_{i=1}^{20\ 000} a_{z_{-}m(i)} \right) / 2T_{100} \right] \end{cases}$$

$$(6)$$

式中: $a_{x_{-p}}$, $a_{y_{-p}}$, $a_{z_{-p}}$ 为对应加速度计+90°位置测量 值; $a_{x_{-m}}$, $a_{y_{-m}}$, $a_{z_{-m}}$ 为对应加速度计-90°位置测量 值。激光陀螺捷联惯性导航系统传感器数据采集周 期为 5 ms,每个位置数据测量时间 $T_{100} = 20\ 000 \times 0.005 = 100$ (s)。

2)标定 x 轴激光陀螺刻度因子 n₁₁。系统转动 至航向 0°、横滚 0°、俯仰 0°位置保持静止(见图 3);然 后给定航向 0°,待初始化完成后,沿俯仰方向缓慢、勾 速转动+360°,采集数据 100 s;再沿俯仰方向缓慢、勾 速转动-360°,即回到起始位置,采集数据 100 s。

$$n_{11} = n_{11_0} \{ 1.0 - [(\Delta V_{e1} - \Delta V_{e2})/2] / (2\pi \times g \times T_{100} \times \tau) \}$$
(7)

3) 标定 z 轴激光陀螺刻度因子 n₃₃。系统转动 至航向一90°、横滚 0°、俯仰 0°位置保持静止,如图 8 所示。给定航向一90°,初始化完成后,沿俯仰方向 缓慢、匀速转动+360°,采集数据 100 s,再沿俯仰方 向缓慢、匀速转动-360°,采集数据 100 s,再回到初 始位置。

4)标定 y 轴激光陀螺刻度因子 n₂₂。系统转动 至航向一90°、横滚一90°、俯仰 0°位置保持静止,即 从初始位置(见图 8)转至标定准备位置(见图 9)。 给定航向一90°,待初始化完成后,沿俯仰方向缓慢、 匀速转动+360°,采集数据 100 s;再沿俯仰方向缓 慢、匀速转动-360°,采集数据 100 s,再回到初始 位置。

5)标定 z 轴加速度计零偏 A₀₃。系统转动至航 向 0°、横滚 0°、俯仰 0°位置保持静止,然后给定航向 0°,待初始化完成后,沿横滚方向缓慢匀速转动 +180°,采集数据 100 s;再沿横滚方向缓慢匀速转 动-180°,回到初始位置,采集数据 100 s;再继续沿 横滚方向缓慢匀速转动-180°,采集数据 100 s;然 后沿横滚方向缓慢匀速转动+180°,回到初始位置。

$$A_{03} = A_{03_0} - \{ [(\Delta V_{e1} + \Delta V_{e2})/2] / (2 \times g \times T_{100}) \}$$
(10)

6)标定 x 轴加速度计零偏 A₀₁。系统转动至航向-90°、横滚 0°、俯仰 0°位置保持静止,给定航向-90°,待初始化完成后,沿俯仰方向缓慢匀速转动+180°,采集数据 100 s;再沿俯仰方向缓慢匀速转动-180°,回到初始位置,采集数据 100 s;再继续沿俯仰方向缓慢、匀速转动-180°,采集数据 100 s;然后沿横滚方向缓慢、匀速转动+180°,回到初始位置。

$$A_{01} = A_{01_0} + \{ [(\Delta V_{e1} + \Delta V_{e2})/2]/(2 \times g \times T_{100}) \}$$
(11)
7) 标定 y 轴加速度计零偏 A_{02} , y 轴加速度计

与 z 轴加速度计的安装误差 a₂₃。系统转动至航向 0°、横滚 0°、俯仰 0°位置保持静止,然后给定航向 0°, 待初始化完成后,沿横滚方向缓慢、匀速转动+90°, 采集数据 100 s;再沿横滚方向缓慢、匀速转动 -90°,回到初始位置,采集数据 100 s;再继续沿横 滚方向缓慢、匀速转动-90°,采集数据 100 s;最后 沿横滚方向缓慢、匀速转动+90°,回到初始位置。

$$A_{02} = A_{02_0} + \{ [(\Delta V_{e1} - \Delta V_{e2})/2] / (2 \times g \times T_{100}) \}$$
(12)
$$a_{23} = a_{23_0} + [(\Delta V_{e1} + \Delta V_{e2})/(2 \times g \times T_{100})]$$
(13)

8) 标定 x 轴加速度计与 y 轴加速度计的安装 误差 a₁₂。系统转动至航向-90°、横滚 0°、俯仰 0°位 置保持静止,然后给定航向-90°待初始化完成后, 沿俯仰方向缓慢、匀速转动+90°,采集数据 100 s; 再沿俯仰方向缓慢、匀速转动-90°,回到初始位置, 采集数据 100 s;再继续沿俯仰方向缓慢、匀速转动 -90°,采集数据 100s;然后沿俯仰方向缓慢、匀速转 动+90°,回到初始位置。

$$a_{12} = a_{12_0} - \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$$
(14)

9) 标定 x 轴加速度计与 z 轴加速度计安装误 差 a₁₃。系统转动至航向-90°、横滚-90°、俯仰 0° 位置保持静止,然后给定航向-90°,待初始化完成 后,沿俯仰方向(绕 y 轴方向)缓慢、匀速转动+90°, 采集数据 100 s;再沿俯仰方向缓慢、匀速转动 -90°,回到初始位置,采集数据 100 s;再继续沿俯 仰方向缓慢、匀速转动-90°,采集数据 100 s;最后 沿俯仰方向缓慢、匀速转动+90°,回到初始位置。

 $a_{13} = a_{13_0} - \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$ (15)

10) 标定 y 轴激光陀螺与 x 轴激光陀螺安装误 差 n_{21} 和 z 轴激光陀螺与 x 轴激光陀螺安装误差 n_{31} 。系统转动至航向 -90° 、横滚 0°、俯仰 0°位置保 持静止,然后给定航向 -90° ,待初始化完成后,沿横 滚方向缓慢、匀速转动 $+90^{\circ}$,采集数据 100 s;再沿 横滚方向缓慢、匀速转动 -90° ,回到初始位置,采集 数据 100 s;再继续沿横滚方向缓慢、匀速转动 -90° ,采集数据 100 s;最后沿横滚方向缓慢、匀速 转动 $+90^{\circ}$,回到初始位置。

$$n_{21} = n_{21_0} - \lfloor (\Delta V_{e1} + \Delta V_{e2})/(2 \times g \times T_{100}) \rfloor$$
(16)

$$n_{31} = n_{31_0} - \lfloor (\Delta V_{e1} + \Delta V_{e2})/(2 \times g \times T_{100}) \rfloor$$
(17)

11)标定 x 轴激光陀螺与 y 轴激光陀螺安装误 差 n_{12} 和 z 轴激光陀螺与 y 轴激光陀螺安装误差 n_{32} 。系统转动至航向-90°、横滚 0°、俯仰 0°位置保 持静止,然后给定航向-90°,待初始化完成后,沿航 向方向缓慢、匀速转动+90°,采集数据 100 s;再沿 航向方向缓慢、匀速转动-90°,回到初始位置,采集 数据 100 s;再继续沿航向方向缓慢、匀速转动 -90°,采集数据 100 s;最后沿航向方向缓慢、匀速 转动+90°,回到初始位置。

 $n_{32} = n_{32_0} + \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$ (18)

$$n_{12} = n_{12_0} + \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$$
(19)

12) 标定 y 轴激光陀螺与 z 轴激光陀螺安装误 差 n₂₃ 和 x 轴激光陀螺与 z 轴激光陀螺安装误差 n₁₃。系统转动至航向 0°、横滚 0°、俯仰 0°位置保持 静止,然后给定航向 0°,待初始化完成后,沿俯仰方 向缓慢、匀速转动+90°,采集数据 100 s;再沿俯仰 方向缓慢、匀速转动-90°,回到初始位置,采集数据 100 s;再继续沿俯仰方向缓慢、匀速转动-90°,采 集数据 100 s;最后沿俯仰方向缓慢、匀速转动 +90°,回到初始位置。

$$n_{23} = n_{23_0} + \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$$
(20)
$$n_{13} = n_{13_0} + \left[(\Delta V_{e1} + \Delta V_{e2}) / (2 \times g \times T_{100}) \right]$$
(21)

13)标定 x, y, z 轴激光陀螺零偏 N_{01}, N_{02} 、 N_{03} 。系统转动至航向 0°、横滚 0°、俯仰 0°位置保持 静止,然后给定航向 0°,待初始化完成后,保持静止 采集数据 600 s,系统自动计算出 x, y, z 轴激光陀螺 零偏 N_{01}, N_{02}, N_{03} 如下:

 $N_{01} = N_{01_0} + 3\ 600 \times K \times V_e / (2R) \tag{22}$

 $N_{02} = N_{02 0} - 3\ 600 \times K \times \psi/T_{10} \tag{23}$

$$N_{03} = N_{03} - 3\ 600 \times K \times V_n / (2R) \tag{24}$$

式中:R为地球长半轴; V_e 为东向速度; V_n 为北向速度; $T_{10} = 600$ s。

14)标定 y、z 轴激光陀螺零偏 N_{02} 、 N_{03} 。系统 转动至航向-90°、横滚 0°、俯仰 0°位置保持静止,然 后给定航向-90°,待初始化完成后,保持静止采集 数据 600 s,系统在 13)基础上自动计算出 y、z 轴激 光陀螺零偏 N_{02} 、 N_{03} 如下:

$$N_{02} = N_{02_0} - 3\ 600 \times K \times \left[(\psi - ik_0/K)/T_{10} \right]$$
(25)

$$N_{03} = N_{03_0} + 3\ 600 \times K \times V_e / (2R) \tag{26}$$

式中: ϕ 为数据采集完时刻的航向; $ik_0 = -90^{\circ}$ 为给 定的初始航向。

标定完成后,自动生成24个参数,写入到配置 文件中,每次系统开启24个自动读取配置文件,载 入相应参数,如表1所示。

表1 IMU标定初始值和标定完成参数对照表

序号	标定参数	变量	初始值	标定完成	
1	x 轴激光陀螺零	N	+0.000.000	-0.089 093	
	偏/[(°) • h^{-1}]	1 • 01	1 0.000 000		
2	y轴激光陀螺零	N_{02}	+0.0000000	+0.024217	
	$ (a/[(°) \cdot h^{-1}] $				
3	z 轴激光陀螺零	$N_{\scriptscriptstyle 03}$	+0.0000000	+0.083595	
	$ \frac{h}{h} $				
4		$A_{\scriptscriptstyle 01}$	+0.0000000	+0.005578	
	(g=9.8 m/s [*])				
5	y 抽加还何零価(g=9.8 m/s2)	$A_{\scriptscriptstyle 02}$	+0.0000000	-0.001 545	
	z 轴加速计零偏				
6	$(g=9.8 \text{ m/s}^2)$	$A_{\scriptscriptstyle 03}$	+0.0000000	-0.006 089	
7	x 轴激光陀螺刻度因子	n_{11}	+0.932920	+0.932914	
8	x 轴激光陀螺安装误差	n_{12}	+0.0000000	+0.001704	
9	x 轴激光陀螺安装误差	n_{13}	+0.0000000	-0.000 680	
10	y轴激光陀螺安装误差	n_{21}	+0.0000000	-0.001 561	
11	y轴激光陀螺刻度因子	n_{22}	+0.932920	+0.932777	
12	y轴激光陀螺安装误差	n_{23}	+0.0000000	+0.000938	
13	z 轴激光陀螺安装误差	n_{31}	+0.0000000	+0.000483	
14	z 轴激光陀螺安装误差	n_{32}	+0.0000000	-0.004 225	
15	z 轴激光陀螺刻度因子	n_{33}	+0.932920	+0.932778	
16	x 轴加速计刻度因子	a_{11}	+1.0000000	+0.980063	
17	x 轴加速计安装误差	a_{12}	+0.0000000	+0.000778	
18	x 轴加速计安装误差	a_{13}	+0.0000000	-0.000 321	
19	y 轴加速计安装误差	a_{21}	+0.0000000	+0.0000000	
20	y轴加速计刻度因子	a_{22}	+1.0000000	+1.080845	
21	y轴加速计安装误差	a_{23}	+0.0000000	+0.001081	
22	z 轴加速计安装误差	a_{31}	+0.0000000	+0.0000000	
23	z 轴加速计安装误差	a_{32}	+0.0000000	+0.0000000	
24	z 轴加速计刻度因子	a_{33}	+1.0000000	+0.953045	

3 IMU 实验验证

激光陀螺捷联惯导系统 IMU 精度验证采用高 精度数显转台验证姿态重复性和正交性,采用陆用 车辆跑车验证姿态稳定性。

3.1 姿态重复性和正交性实验

选用高精度数显转台,误差优于 0.000 1°。调 平高精度数显转台,将 IMU 固定在转台上^[6],做好 相应测试准备,开启电源寻北 2 次取平均值,设置为 高精度数显转台刻度的初值,每个象限自动寻北 4 次,如表 2~5 所示。

4+ +

	表 2 转台 0	。位置测试数	文 据		
序号	航向/(°)	橫滚/(°)	俯仰/(°)		
1	0.011 565 8	0.002 935	-0.000 660		
2	-0.009 192 0	0.003 021	-0.000860		
3	-0.0073550	0.003 615	-0.001 320		
4	0.003 195 1	0.002 923	-0.001010		
平均值	-0.0004470	0.003 124	-0.000960		
均方差	0.006 261 6	0.000 197	0.000 162		
	表3 转台90)°位置测试药	数据		
序号	航向/(°)	橫滚/(°)	俯仰/(°)		
1	90.010 040	0.003 193	0.000 331		
2	90.002 872	0.002 869	0.000 647		
3	89.998 995	0.002 147	0.000 573		
4	90.006 333	0.003 344	0.000 195		
平均值	90.004 560	0.002 888	0.000 436		
均方差	0.002 901 2	0.000 304	0.000 139		
表 4 转台 180°位置测试数据					
序号	航向/(°)	橫滚/(°)	俯仰/(°)		
1	180.003 14	0.001 930	0.001 658		
2	180.007 41	0.001 529	0.000 991		
3	180.002 54	0.001 137	0.001 559		
4	180.000 58	0.001 648	0.000 646		
平均值	180.003 42	0.001 561	0.001 214		

头 衣			
序号	航向/(°)	橫滚/(°)	俯仰/(°)
均方差	0.001 596 4	0.000 182	0.000 316
	表5 转台22	70°位置测试	数据
序号	航向/(°)	横滚/(°)	俯仰/(°)
1	270.012 11	0.004 157	0.002 99
2	270.006 56	0.003 439	0.003 05
3	270.003 85	0.004 046	0.003 788
4	270.005 46	0.004 221	0.002 579
平均值	270.006 99	0.003 966	0.003 102
均方差	0.002 044 4	0.000 211	0.000 274

3.2 跑车验证姿态稳定性

将激光陀螺捷联惯导系统 IMU 固定在车体底 盘上^[7],中轴线与车体中轴线大致保持一致。实验 车配置有高精度方位引出装置和数字水平仪,无累 计误差。方位引出装置精度高于 0.006°,验证航向 稳定性;数字水平仪精度优于 0.000 6°。IMU 初始 化完成后,方位引出装置装订初始航向值和数字水 平仪装订横滚、俯仰值与 IMU 设备初值一致,在某 地闭环跑车实验结果如表 6 所示。

表 6 转台 270°位置测试数据

序号-	惯性测量单元(IMU)		方位引出装置	数字水平仪		误差			
	航向/(°)	横滚/(°)	俯仰/(°)	航向/(°)	横滚/(°)	俯仰/(°)	航向/(°)	横滚/(°)	俯仰/(°)
1	18.490 735	0.009 131	-0.017374	18.490 735	0.009 131	-0.017 374	0.000 000	0.000 000	0.000 000
2	73.089 917	0.016 078	0.052 619	73.086 553	0.016 232	0.050 595	0.003 364	-0.000154	0.002 023
3	155.919 132	0.009 914	0.038 357	155.914 991	0.015 055	0.034 939	0.004 141	-0.005 141	0.003 418
4	253.865 463	0.019 274	0.023 924	253.860 077	0.013 940	0.019 301	0.005 387	0.005 334	0.004 623
5	345.907 142	0.008 051	-0.023233	345.907 313	0.003 913	-0.024 130	0.001 829	0.004 138	0.000 897
6	18.039 193	0.012 562	-0.012 099	18.036 076	0.011 384	-0.010 579	0.003 116	0.001 178	-0.001 520

由表 6 可以看出, 航向稳定性优于 0.009°, 横滚、俯仰精度优于 0.06°。

4 结束语

本文提出了基于激光陀螺捷联惯性导航系统 IMU误差标定方法,解决了因转台精度、基座对北 和调平,以及系统工作时激光陀螺抖动、长时间工作 温度升高、算法复杂等因素对系统标定的难点,提出 了以 IMU 输出结果速度为观测量,采用最小二乘 拟合法的系统级标定法,通过三轴转台多位置测量: 静止-转动-静止,快速辨识三轴激光陀螺和三轴加 速度计正交安装误差、传感器零偏、刻度因子等 24 个误差参数,标定过程缩短至 2 h,姿态精度优于 0.012°。实验表明,采用该方法算法简单,操作过程 便捷,可以有效解决因转台误差对 IMU 标定精度 的影响,从而提高了激光陀螺捷联惯性导航系统精 度,为 IMU 误差标定提供了参考价值。

参考文献:

- [1] 吴赛成,秦石乔,王省书,等.激光陀螺惯性测量单元
 系统级标定方法[J].中国惯性技术学报,2011,19
 (2):185-189.
- [2] 袁保伦.四频激光陀螺旋转式惯导系统研究[D].长 沙:国防科学技术大学,2007:100-102.
- [3] 谢波,秦永元,万彦辉.激光陀螺捷联惯导系统多位置标定方法[J].中国惯性技术学报,2011,19(2): 158-162.
- [4] 董春梅,任顺清,陈希军. 基于三轴转台误差分析的 IMU标定方法[J]. 系统工程与电子技术, 2016,38 (4):895-901.
- [5] 毛玉良.激光陀螺捷联惯导系统误差辨识与修正技术 研究[D].北京:北京理工大学,2014.
- [6] 王建中,杨璐. 定向测姿系统的研究[J]. 电子技术应 用, 2016,42(9): 14-18.
- [7] WANG Jianzhong. Vehicle attitude determination system based on vehicle GPS[J]. Revista De La Facultad De Ingeniería UCV, 2017, 32(7): 375-384.