文章编号:1004-2474(2018)06-0822-03

稀土元素 Er 掺杂 AIN 的压电性能

泰智薇,杨成韬,胡现伟,谢易微

(电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 610054)

摘 要:采用第一性原理密度泛函理论法研究了纤锌矿结构 AlN 中掺杂不同含量 Er 后的晶体结构和压电性能。计算结果表明,随着掺杂 Er 原子数比 x 由 0 增加到 25%, Er x Al_{1-x} N 晶体的晶胞参数, 晶胞体积和键长显著增大, 压电性能得到提升。当 x=25%时, Er x Al_{1-x} N 体系的压电常数 d_{33} 为 8.67 pC/N, 比纯 AlN 提高了 79.5%, 为未来 AlN 压电薄膜材料研究领域提供了更多可选材料。

关键词:Er_xAl_{1-x}N;压电性能;晶体结构;第一性原理;掺杂改性

中图分类号:TN65;TM135;TB43 文献标识码:A DOI:10.11977/j.issn.1004-2474.2018.06.003

The Piezoelectric Properties of AIN Doped With Rare-Earth Element Er

TAI Zhiwei, YANG Chengtao, HU Xianwei, XIE Yiwei

(State Key Lab. of Electronic Thin Films and Integrated Devices, University of Electronic Science and

Technology of China, Chengdu 610054, China)

Abstract: The crystal structure and piezoelectric properties of wurtzite AlN doped with different contents of Er were studied by using the first-principles density functional theory in this paper. The calculation results show that $\operatorname{Er}_x \operatorname{Al}_{1-x} \operatorname{N}$ crystal cell parameters, crystal cell volume and bond length of the $\operatorname{Er}_x \operatorname{Al}_{1-x} \operatorname{N}$ crystalin crease significantly with the increase of the number of doped Er atoms from 0 to 25%, and the piezoelectric properties are also improved. When x = 25%, the piezoelectric constant d_{33} of $\operatorname{Er}_x \operatorname{Al}_{1-x} \operatorname{N}$ system is 8. 67 pC/N, which is 79.5% higher than that of the pure AlN. The Er-doped AlN provide us an alternative material for piezoelectric thin film in the future.

Key words: Er-doped AlN; piezoelectric property; crystal structure; first-principle; doping modification

0 引言

氮化铝(AlN)是典型的 III-V 族直接带隙宽禁 带半导体材料,在常温、常压下存在稳定的六方纤锌 矿结构。AlN 具有许多优异的物理化学性能,如高 电阻率、高化学稳定性、高热导率及高热稳定性,可 用于电子器件、集成电路封装、介质隔离和绝缘材 料,尤其适于高温、高功率器件^[1]。如今对 AlN 的 研究热点主要集中在声表面波器件的应用,在该领 域,AlN 薄膜能很好地满足大的击穿场强、高声表 面波传播速度、高机电耦合系数,以及与半导体 CMOS 工艺相兼容等要求,成为研制声表面波器件 的首选压电材料。随着无线通信系统和数据传输技 术的快速发展,声表面波器件向高频段发展需求增 加,而 AlN 薄膜具有在无机非铁电性压电材料中最 高的声表面波速度,因此,它可成为有效提高声表面 波器件中心频率的压电材料^[2]。 AlN 薄膜的压电常数(d_{33} = 5.5 pC/N)比传统压 电材料 PZT(60~310 pC/N)小,因此,许多研究者致 力于通过掺杂来提高 AlN 的压电性能。目前,已有 研究表明,稀土元素 Sc 的掺杂能有效提高 AlN 薄膜 的压电响应能力。M. Akiyama 等率先使用 AlSc 双 靶材共溅射法制备了掺钪氮化铝薄膜(Sc_xAl_{1-x}N), 研究发现,当掺杂 Sc 的摩尔分数为 43%时,薄膜的 d_{33} = 27.6 pC/N,与纯 AlN 薄膜相比,其 d_{33} 提高了 400%^[3]。F. Tasnádi 等利用第一性原理方法从理论 上计算得出 Sc_xAl_{1-x}N 的 d_{33} 随掺杂含量的增加而增 大,当 Sc 的原子数比x= 50% 时,与纯 AlN 相比, Sc_xAl_{1-x}N 的 d_{33} 约增长了 400%^[4]。

Er 元素与 Sc 元素同属于稀土元素,具有相似的电子结构。从对 Sc 掺杂 AlN 的改性机理研究中发现,Er 元素比 Sc 元素具有更大的优势。Er 的原子半径比 Sc 大,Er 掺杂 AlN 体系的晶体结构产生

收稿日期:2018-01-13

基金项目:中央高校基本科研业务费专项资金资助项目(ZYGX2013Z001)

作者简介:泰智薇(1991-),女(傈僳族),云南瑞丽人,硕士生,主要从事 AlN 压电薄膜材料改性的研究。通信作者:杨成韬(1965-),男,教授,博士生导师,主要从事铁电薄膜材料与铁电集成器件、压电薄膜材料与器件、电子陶瓷材料与元器件的研究。

的畸变也较大;Er 的电负性比 Sc 小,掺杂后 Er—N 形成离子键的可能性比 Sc—N 高,故选择 Er 掺杂 AlN 来改善其压电性能是可行性的。

本文采用基于密度泛函理论(DFT)的第一性 原理,对不同含量稀土元素 Er 掺杂 AlN 的超晶胞 体系进行几何结构优化,从理论上计算了掺杂和非 掺杂体系的晶胞参数、晶胞体积(V)、键长(*l*)和压 电常数 *d*₃₃;与实验数据进行对比,从理论上分析了 掺杂 Er 元素对 AlN 薄膜压电性能的影响。

1 模型与计算方法

理想的 AlN 是六方晶系纤锌矿结构,属于 P63mc空间群,对称性为 C_{6v-4} ,晶胞参数 a=b=0.311 nm,c=0.498 nm,c/a=1.601。为了体现掺 杂含量的变化,本文所有计算模型都是基于超晶胞 结构,通过建立不同超晶胞大小(2×1×1,2×2×1, 2×2×2),在每个超晶胞模型中用一个 Er 杂质原子 替代 AlN 中的 Al 原子,来实现掺杂含量的变化(对 应掺杂 Er 的原子数比为 25%,12.5%,6.25%)。 图 1(a)为未掺杂 AlN 的原胞结构。图 1(b)为本文

(a) 纤锌矿AIN原胞结构

(b) Er掺杂AlN(2×1×1)超晶胞结构

图 1 纤锌矿 AlN 原胞结构及 Er 掺杂

AlN(2×1×1)超晶胞结构

研究中的一个掺杂含量体系(2×1×1)Er_{0.25} Al_{0.75} N 晶体的超原胞模型。

本文的计算采用基于 DFT 的 VASP 程序 包^[5],在晶体周期性势场中,采用投影缀加波赝势 法(PAW)来描述离子实与价电子之间的相互作 用。在计算过程中,平面波截止能(ecut)选取为 500 eV,电子间的交换-关联能采用广义梯度近似 (GGA)中的 PBE 泛函来处理。系统总能量和电荷 密度在布里渊区的积分计算使用 Monkhorst-Pack^[6]方案来选择 k 网格点为 6×6×4,以保证体 系能量和构型在准完备平面波基水平上的收敛。

2 结果与讨论

2.1 晶体结构

首先优化纤锌矿结构 AlN 晶体的初始原胞,得 到晶胞参数、V、Er—N 键和与掺杂元素 Er 相邻的 Al—N 键分别在 a、c 方向的键长。表 1 为 Er 原子 数比(x)不同时, Er_xAl_{1-x} N 体系的晶胞参数、V 及 l。由表可见,优化后得到的晶胞参数(a = 0.313 nm,b=0.501 nm)与实验值(a=0.311 nm, b=0.498 nm)基本相符,且与其他理论计算结果 (a=0.313 nm,b=0.502 nm;a=0.311 nm,b= 0.504 nm)相差不大。其次,对优化好的初始原胞 建立不同掺杂含量的超晶胞结构并进行优化,得到 x=25%,12.5%,6.25%的 Er_xAl_{1-x} N 体系的晶胞 参数、V、Er—N 键长和 Al—N 键长。

表1 不同 Er 含量 Er_xAl_{1-x}N 体系的晶胞参数(a,c,c/a),V,l

	a/nm	c/nm	c/a	V/nm^3	<i>l</i> /nm (Al—N)		<i>l</i> /nm (Er—N)	
					<i>c</i> 轴	a 轴	c 轴	a 轴
AlN	0.313	0.501	1.603	0.042 4	0.193	0.188		
实验值	0.311[7]	0.498[7]	1.601[7]		$0.192^{[10]}$	0.189[10]		
计算值	0.313[8]	0.502[8]	1.603[8]					
计算值	0.311[9]	0.504[9]	1.619[9]					
$Er_{0.\ 0625} \ Al_{0.\ 937\ 5} \ N$	0.317	0.508	1.602	0.044 1	0.196	0.186	0.220	0.213
$Er_{\scriptscriptstyle 0.125}Al_{\scriptscriptstyle 0.875}N$	0.321	0.511	1.589	0.048 2	0.197	0.187	0.226	0.215
$Er_{0.25}Al_{0.75}N$	0.327	0.522	1.595	0.049 5	0.201	0.190	0.229	0.213

由表1还可看出,随着 Er 掺杂的增加,晶胞参数(a,c)、V、Er—N 键长和 Al—N 键长随之增大,这 主要是由于 Er³⁺半径比 Al³⁺大,掺杂后体系晶格发 生畸变,Er—N 键的键长比 Al—N 键的长,从而增 大了晶格常数和 V,其变化机理与 Sc 掺杂 AlN 类 似^[11]。虽然晶胞参数和 V 随 x 发生改变,但 c/a 几 乎保持不变(1.60),这说明虽然 Er 原子的加入使晶 体结构发生畸变,但掺杂后的晶格类型保持不变,依 然是六方晶系结构。

2.2 压电性能

对结构优化好后的 Er_xAl_{1-x}N 体系计算压电应

变常数 e_{33} 和弹性常数 c_{33} ,再由 $d_{33} \approx \frac{e_{33}}{c_{33}}$ ^[4,8]计算可 得 d_{33} 。如图 2(a)所示,随着 x 的增加, $Er_x Al_{1-x} N$ 的 c_{33} 先减小后增加,在低含量(x < 6.25%)掺杂时, c_{33} 剧烈下降后有略微上升趋势。但与纯 AlN 相比, 掺杂 后 体 系 的 c_{33} 值 整 体 有 下 降 趋 势。这 与 Sc_x Al_{1-x}N 体系低含量(x < 50%)掺杂时的规律相 同^[4]。图 2(b)为 e_{33} 随 Er 掺杂 x 的变化情况。由 图可见,在 x < 12.5%时, e_{33} 随 x 增加而缓慢减小, 当 x > 12.5%时, e_{33} 随 x 增加而急剧增大,甚至超过 了纯 AlN 的 e_{33} 。 $Er_x Al_{1-x} N$ 体系的 e_{33} 的变化规律 与 Sc_x Al_{1-x}N 体系相比略不同^[8]。

图 2 $\operatorname{Er}_{x}\operatorname{Al}_{1-x}\operatorname{N}$ 的 c_{33} 和 e_{33} 随 x 的变化

图 3 为通过 $d_{33} \approx e_{33}/c_{33}$ 计算得到 Er_xAl_{1-x}N 的 d_{33} 随 x 的变化情况。计算得到纯 AlN 的 $d_{33} =$ 4.83 pC/N,文献[8,12-13]中 d_{33} =3.25~5.5 pC/ N。 $Er_x Al_{1-x}$ N的 d_{33} 随x增大而整体增大,虽然在 $x=6.25\%\sim12.5\%$ 时, d_{33} 有略微下降的趋势,但随 着掺杂含量继续增加, d_{33} 急剧上升。在x = 25%时,计算可得 $d_{33} = 8.67$ pC/N,比纯 AlN 提高了 79.5%。同时,我们还通过实验验证了计算结果的 准确性,利用磁控溅射镀膜法制备了 x = 5%的 $Er_x Al_{1-x}N$ 薄膜,经压电响应显微镜(PFM)测试得 到样品的 $d_{33} = 6.64 \text{ pC/N}$,而理论计算 x = 6.25%时, $Er_x Al_{1-x}N$ 的 $d_{33} = 5.96 \text{ pC/N}$,实验值与理论 计算值基本相符。由此可得,通过掺杂稀土元素 Er 制备 $Er_x Al_{1-x}N$ 薄膜可有效提高材料的压电性能, 为 AlN 薄膜在声表面波器件领域的应用提供了更 多可选择的压电材料。

许多研究人员对掺杂改性 AlN 压电性能的机 理进行了深入研究,其中 F. Tasnádi 等认为压电性 能的提升来自内在的合金效应:一方面使薄膜结构 畸变引起 c_{33} 减小,另一方面掺杂元素产生的内在应 变导致 e_{33} 增大,最终引起材料 d_{33} 提高^[4]。此外,还 有人认为掺杂结构晶格的畸变,原化学键的改变,甚 至掺杂体系的晶体结构随掺杂含量变化的状态都可 能增强体系的压电性能^[3,14-16]。由对 $Er_x Al_{1-x} N$ 晶 体结构的分析可看出,由于 Er^{3+} 半径比 Al^{3+} 半径 大,掺杂后畸变的晶体结构会增强压电性能;对于化 学键而言,Er 的电负性比 Al 小,Er 掺入 AlN 后会 与 N 以离子键形式结合,这使薄膜从原有的 Al—N 纯共价键状态转变为离子键和共价键混合的状态, 进而使 AlN 的压电性能得到增强。

3 结束语

通过第一性原理计算和实验验证,计算得到当 Er 原子数比 x = 25%时, Er_xAl_{1-x}N体系的 $d_{33} =$ 8.67 pC/N,比纯 AlN 提高了 79.5%。经实验测 试,x=5%时, $Er_x Al_{1-x}N$ 薄膜 $d_{33}=6.64 \text{ pC/N}$,与 理论计算 x=6.25%时的 $Er_x Al_{1-x} N$ 的 $d_{33}=5.96$ pC/N 接近, $Er_x Al_{1-x} N$ 的 d_{33} 随掺杂 x 增加而增 大。计算结果表明,在未来 AlN 薄膜应用声表面波 器件领域,可通过稀土元素 Er 的掺杂来提高 AlN 薄膜材料的压电性能。理论研究 Er_xAl_{1-x}N 体系 的晶体结构可解释 $Er_x Al_{1-x} N$ 掺杂改性的机理,主 要是由于掺杂元素 Er 的离子半径比 Al 的离子半 径大, 使 $Er_x Al_{1-x}N$ 的晶体结构畸变造成弹性常数 发生显著柔化,从而提高 AlN 的压电性能;此外,Al 与 Er 的电负性差异较大,使掺杂后的 Er_xAl_{1-x}N 在成键时,存在部分的 Er-N 离子键和 Al-N 共 价键的混合状态,进一步增强了 AlN 的压电性能。

参考文献:

[1] 陈颖慧, 王旭光, 席仕伟, 等. AIN 压电薄膜的制备工艺 [J]. 微纳电子技术, 2013(8): 506-511.