瓦斯突出多维预测模型的研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(50874059,70971059);教育部博士点基金资助项目(200801470003);中国博士后研究生基金资助项目(20100471476);辽宁省创新团队项目基金资助项目(2008T082)

伦理声明:



The Prediction Model of Multi dimensional Research on Gas Outburst
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    煤矿瓦斯灾害是煤矿生产中最危险的事故,给安全生产带来严重隐患,所以瓦斯灾害的预测很重要。该文针对以往的瓦斯预测法无法解决多维灾害问题,提出了多维瓦斯预测模型和自回归人工神经网络形成一种新的自适应预测方法,对多维灾害进行预测。实验结果表明,自回归神经网络预测精度高,自适应性强,可对瓦斯灾害趋势做出很好的预测。

    Abstract:

    Coal mine gas calamity is the most dangerous accidents in production, which brought serious danger for safety production. The forecast of gas calamity is particularly important. Based on the previous gas forecast method cannot solve the problem of multi dimensional disasters. A new adaptive prediction method was proposed for the prediction of multi dimensional by combining the multidimensional gas forecast model and regression neural network. Experimental results showed that the autoregressive neural network prediction had highly precision and strongly adaptability, which could make a good effect on gas disaster forecast.

    参考文献
    相似文献
    引证文献
引用本文

付华,姜伟,单欣欣.瓦斯突出多维预测模型的研究[J].压电与声光,2012,34(2):318-321. FU Hua, JIANG Wei, SHAN Xinxin. The Prediction Model of Multi dimensional Research on Gas Outburst[J]. PIEZOELECTRICS AND ACOUSTOOPTICS

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-29
  • 出版日期: