基于改进关键帧筛选的多状态约束卡尔曼滤波
作者:
作者单位:

1.重庆邮电大学 自主导航与微系统重庆市重点实验室,重庆 400065 ;2.重庆邮电大学 智能传感技术与微系统重庆市高校工程研究中心,重庆 400065 ;3.中国电子科技集团公司 第二十六研究所,重庆 400060

作者简介:

修瑾智(1998-),男,重庆市人,硕士生。

通讯作者:

基金项目:

国家自然科学基金资助项目(52175531,62305039); 重庆市自然科学基金项目资助(CSTB2023NSCQ-MSX0568,CSTB2022NSCQ-LZX0050,CSTB2023NSCQ-LMX0028,cstc2022ycjh-bgzxm0190)

伦理声明:



Multi-State Constrained Kalman Filtering Based on Improved Keyframe Filtering
Author:
Ethical statement:

Affiliation:

1.Chongqing Key Lab.of Autonomous Navigation and Microsystems, Chongqing University of Posts andTelecommunications, Chongqing 400065 , China ; 2.Chongqing Engineering Research Center of Intelligent SensingTechnology and Microsystem, Chongqing University of Posts and Telecommunications, Chongqing 400065 , China ;3.The 26th Research Institute of China Electronics Technology Group Corporation, Chongqing 400060 , China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于多状态约束卡尔曼滤波的融合算法仅利用单帧图像进行位姿估计,若初始化不正确,会导致视觉位姿估计发散严重;若将每个视觉特征点都包含进系统状态向量,则极易增加系统计算负担。针对上述问题,提出了一种改进的关键帧选择算法,利用多个视觉关键帧对相同特征点的约束来减小视觉测量误差,提高定位精度,同时只将关键帧解算出的相机位姿融入系统状态向量,有效地降低了系统计算量。实验表明,改进算法与EKF相比,其定位精度和计算效率分别提升了29.09%和32.2%。与Orb-slam2相比,改进算法的计算效率提升了35.48%。

    Abstract:

    The fusion algorithm based on multi-state constrained Kalman filtering solely uses a single frame imagefor pose estimation. If the initialization is incorrect, then it can cause severe divergence in visual pose estimation.Furthermore, each visual feature point in the system state vector can easily lead to computational burden to thesystem. Given the aforementioned problems, an improved keyframe selection algorithm is proposed, which usesmultiple visual keyframes to constrain the same feature points for reducing visual measurement errors and improvingpositioning accuracy. Simultaneously, only the camera pose calculated from keyframes is integrated into the system statevector, which can effectively reduce system computation. The experiment shows that the improved algorithm enhances positioningaccuracy and computational efficiency by 29.09% and 32.2%, respectively, when compared to EKF. Additionally,the proposed algorithm increases computational efficiency by 35.48% when compared to that of Orb-slam2.

    参考文献
    相似文献
    引证文献
引用本文

修瑾智,方针,彭慧,陈燕苹,邹梦强,刘宇,杨诚霖,王森.基于改进关键帧筛选的多状态约束卡尔曼滤波[J].压电与声光,2024,46(4):474-477. XIU Jinzhi, FANG Zhen, PENG Hui, CHEN Yanping, ZOU Mengqiang, LIU Yu, YANG Chenglin, WANG Sen. Multi-State Constrained Kalman Filtering Based on Improved Keyframe Filtering[J]. PIEZOELECTRICS AND ACOUSTOOPTICS

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-29
  • 出版日期: